Teacher Education Curriculum and Artificial Intelligence (AI)

PHILIPPINE ASSOCIATION FOR TEACHERS OF EDUCATIONAL FOUNDATIONS UNITED PROFESSIONALS FOR THE DEVELOPMENT & ADVANCEMENT OF TEACHER EDUCATION (PATEF-UPDATE)

December 9, 2023 Via Zoom

Johannes Paulus "JP" Acuna Information Technology Specialist – Data Architect Public and Development Sector Manila, Philippines jp@jpacuna.com

Your Resource Person – Background

JP Acuna

- Graduate of BS Computer Science Specialization in Software Technology
- Ongoing Academic Research (MS) on Data Interoperability Framework for Poverty Reduction with DSWD
- Various IT Roles and Capacities (Solo IT Unit, Team Leader and Specialist)
- Engaged with Government, International Development, and Academe since 2007
 - Data Architect Information Technology (IT) Specialist Based in Manila, Philippines

Your Resource Person – Work Experience

JP Acuna

Your Resource Person – Active Projects

CONTROL AND PREVENTION

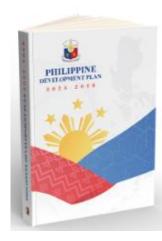
PATEF-UPDATE | December 9, 2023

Activity with Audience - 2 Minutes

In the zoom chatbox, write a question that you wish answered in this session: "Teacher Education Curriculum and AI"

Introduction

Minority Report (film) - 2002


In 2054, the federal government plans to nationally implement the Washington, D.C., prototype "Precrime" police program, which has been operating for six years.

Three clairvoyant humans ("precogs") receive psychic impressions of an impending homicide, and officers analyze their visions to determine the location and apprehend the perpetrator before the crime can occur.

Replace the clairvoyant humans into AI, science fiction may turn into reality.

Context Setting

Philippine Development Plan (PDP) 2023-2028

The PDP 2023-2028 is a plan for deep economic and social transformation to reinvigorate job creation and accelerate poverty reduction by steering the economy back on a high-growth path. This growth must be inclusive, building an environment that provides equal opportunities to all Filipinos, and equipping them with skills to participate fully in an innovative and globally competitive economy.

Subchapter 2.2 Improve Education and Lifelong Learning

Filipinos are also envisioned to be smart and innovative with learning poverty substantially addressed. Filipino learners have access to high-quality lifelong learning opportunities that develop adequate competencies and character qualities which will allow them to thrive in society and the world of work. Transformative lifelong learning opportunities will be instrumental in developing and protecting the capabilities of families to ensure that all Filipinos are able to realize their full potential to keep pace with the envisioned socioeconomic transformation.

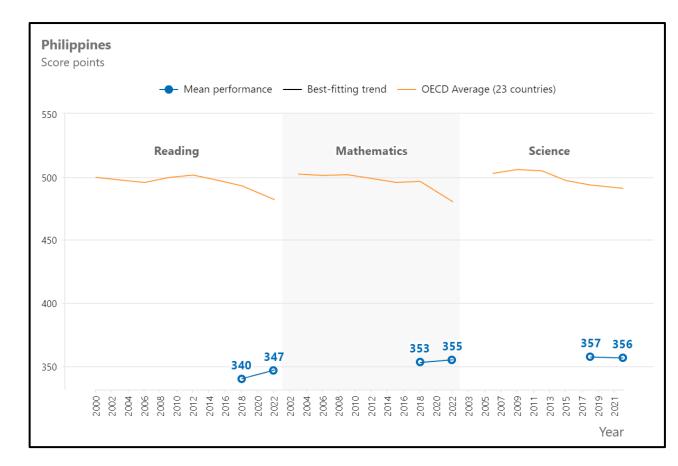
Assessment and Challenges

The results are alarming as the World Bank estimates learning poverty rate in the Philippines at 90.9 percent. This means that nine out of ten 10-year-old Filipino children are unable to read and understand a simple text.

Teacher education needs improvement, given the consistently low passing rate in the licensure examination for teachers (LET).

There are also students who remain non-readers even in high school.

The time to **transform the education system** is now or the country risks missing out on the demographic dividend. This has become even more urgent with the learning losses brought about by the COVID-19 pandemic that are expected to result in lost productivity over the next decades if urgent action is not taken.

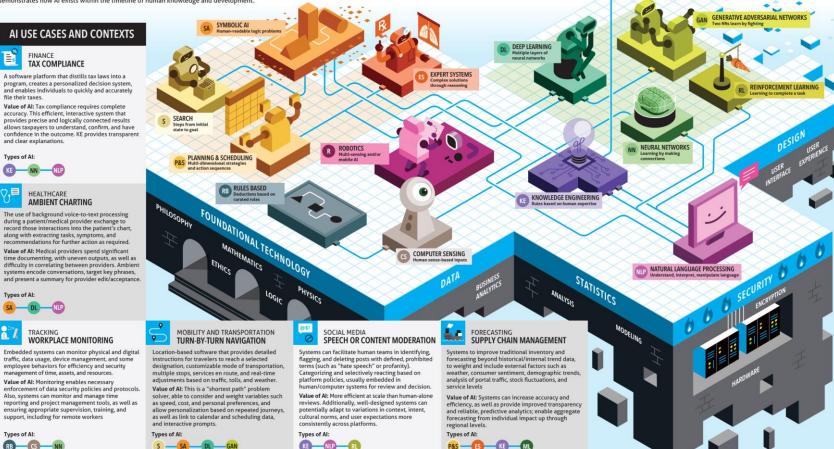

Context Setting

PISA result indicates PH education system is 5 to 6 years behind – DepEd

DEC 7, 2023 12:55 PM PHT

According to the OECD, each 20-point deficit from the average signifies a oneyear lag in the annual learning pace of 15-year-olds in PISA-participating countries

Programme for International Student Assessment (PISA) How well did 15-year-old students in the Philippines do on the test?

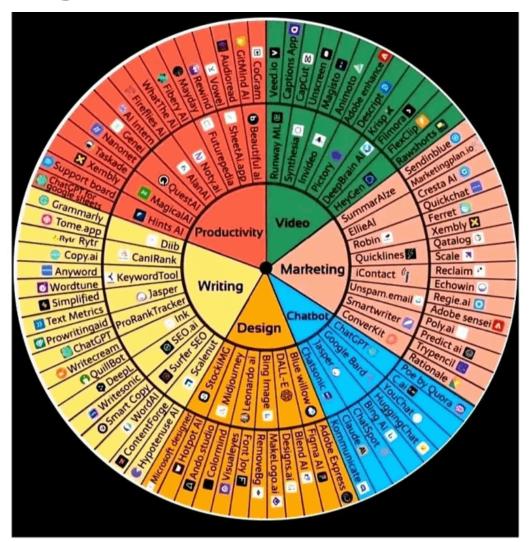


Accessed as of December 9, 2023 from

Artificial Intelligence Landscape (Building Blocks)

THE SPECTRUM OF ARTIFICIAL INTELLIGENCE

Artificial Intelligence (AI) is the computerized ability to perform tasks commonly associated with human intelligence, including reasoning, discovering patterns and meaning, generalizing, applying knowledge across spheres of application, and learning from experience. The growth of AL-based systems in recent years has gamered much attention, particularly in the sphere of Machine Learning. A subset of AL, Machine Learning (ML) systems "learn" from the success or accuracy of their outputs, and can change their processing over time, with minimal human intervention. But there are non-ML types of AI that, alone or in combination, lie behind the real-world applications in common use. General AI — a human-level computational system — does not yet exist. But harrow AI exists in many fields and applications where computerized systems greatly enhance human output or outperform humans at defined tasks. This chart explains the main types of AI, their relationships to each other, and provides specific examples of how they are currently appear in our day-to-day lives. It also demonstrates how AI exists within the timeline of human knowledge and development.


PATEF-UPDATE | December 9, 2023

Accessed as of December 9, 2023 from https://fpf.org/wp-content/uploads/2021/01/FPF_AIEcosystem_illo_03.pdf

FUTURE OF PRIVACY FORUM

MACHINE LEARNING

Artificial Intelligence Landscape (Tools)

Artificial Intelligence Landscape (Tools)

15 AI tools to use in the classroom

...

Curipod

ChatGPT

Ouillbot

Remove

Perplexity

PowerPoint Grammarly Spkr. Coach

SlidesAI.io

DALL-E

Education

Copilot

Videos

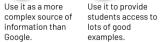
Canva Bkgrnd.

Remover

YouTube

Summary

yippity


Yippity

Canva Magic Write

7

Use it to remix definitions (on a student work. variety of levels).

3

8

13

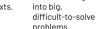
Ask ChatGPT to

Grade the bot.

6

Google.

vou


learning

experiences.

Ask it to do some Add it to the teacher tasks for "think pair share" thinking routine.

Use it to summarize texts.

write your lesson plans.

Create Provide tutoring personalized

or coaching. facilitate

Infographic by Matt Miller (@jmattmiller / DitchThatTextbook.com)

14

Anticipate the

response you'd

expect from AI

19

ways to use

ChatGPT in the

feedback for student work.

Ask the bot for advice.

15

Take several

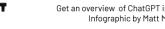
responses and

make a better

product.

20

≫



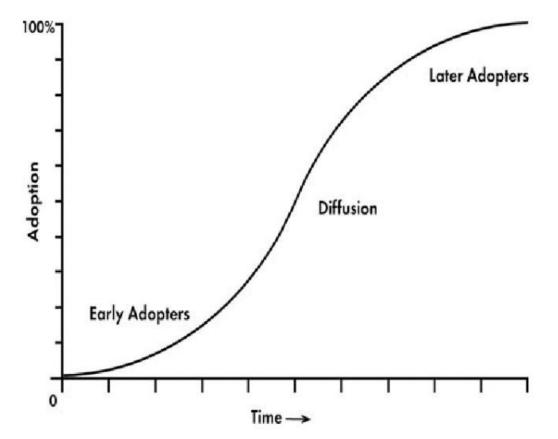
Generate prompts and questions to

discussions.

Provide Supplement in-person information and answer questions. instruction

Get an overview of ChatGPT in the classroom at ditchthattextbook.com/ai.

Diffusion of Artificial Intelligence



Raven Josiah - Master Collaborator

Co-Founder of WAYWO | Publishing Partner for Innovate KC | Specialized in Ecosystem Building and Productive Collaboration

August 4, 2023

Al appears to be in the phase of **rapid adoption**, driven by factors such as *technological advancements*, *decreasing costs*, and *increasing accessibility*.

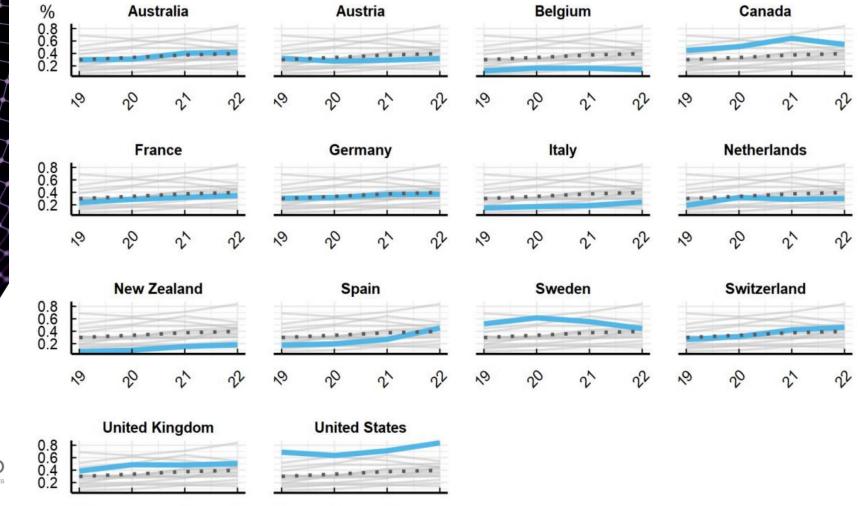
Misconceptions about Artificial Intelligence - what it means for people

"AI is not capable of being creative"

"Al is out of reach for people in developing countries"

"This is like previous technology waves"

Gabriel Demombynes Manager of the Human Capital Project at the World Bank


Trend in Online Vacancies Requiring AI skills, by country and year (2019-22)

OECD publishing

EMERGING TRENDS IN AI SKILL DEMAND ACROSS 14 OECD COUNTRIES

OECD ARTIFICIAL INTELLIGENCE PAPERS October 2023 No. 2

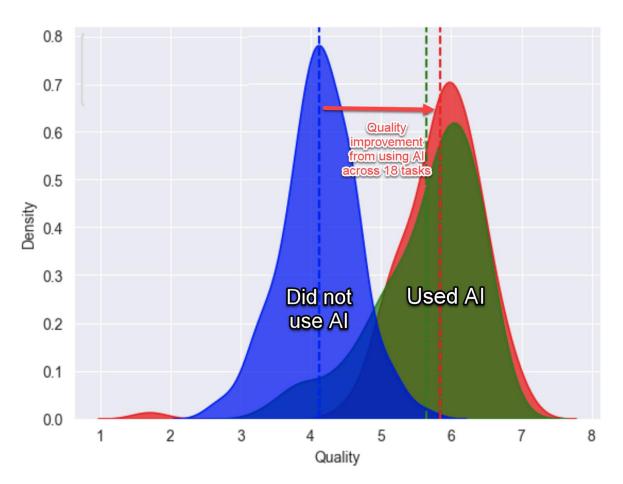
2

Accessed as of December 9, 2023 from Organisation for Economic Co-operation and Development (OECD) https://www.oecd-ilibrary.org/docserver/7c691b9a-en.pdf?expires=1702064890&id=id&accname=guest&checksum=126240999BDE5D2CB5C60268288ED935

22

Early Evidence from Artificial Intelligence Use

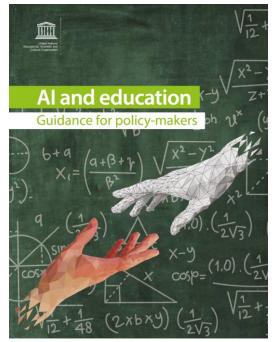
Centaurs and Cyborgs on the Jagged Frontier


I think we have an answer on whether AIs will reshape work....

Consultants using AI **finished 12.2% more tasks** on average

completed tasks 25.1% more quickly

produced **40% higher quality results** than those without



Early Evidence from Artificial Intelligence Use

Workers are divided about the impact of High-skill jobs are the most exposed to Employment rates are now above Profits have outpaced labour costs in advances in artificial intelligence artificial intelligence on jobs pre-pandemic levels many countries % cumulative change of unit labour costs and unit profits, Employment rate index, 100 = December 2019 Exposure to AI (the extent that AI capabilities can match tasks Almost two-thirds of workers using AI in finance and Q4 2019 - Q1 2023 performed by workers in various occupations, $\min = 0 \max = 1$) manufacturing (63%) said that it had improved enjoyment Euro area OECD average United States in their iob. 25% 30% 0% 5% 10% 15% 20% 0.0 0.2 0.4 0.6 0.8 1.0 105 Australia 0 However, 60% of workers are also worried about losing High-skill jobs 100 Germany their jobs to AI in the next ten years. Managers UK 95 Chief executives Labour costs Profits 90 Engineers US 63% 60% 85 Spain 6 Low-skill jobs 80 Dec. Italy Refuse workers June Dec. June Dec. June Dec. France 0-0 2019 2020 2020 2022 2022 Labourers Company profits have increased more than labour costs, Cleaners Enjoy their job more Worried about losing Employment in the OECD area stabilised in April 2023 at a suggesting the cost-of-living crisis has not been shared because of AI their job to Al rate about 3% higher than its pre-crisis level. equally by everyone. Lack of relevant skills is a barrier to Urgent action is needed to ensure using artificial intelligence trustworthy AI in the workplace **OECD Employment Outlook** 2023 57% of workers in finance and manufacturing whose ARTIFICIAL INTELLIGENCE AND THE LABOUR MARKET 2 out of 5 companies declare that the lack of relevant skills employer uses AI worry about their privacy. is a barrier to using AI at work. 57% _ _ _ _ _ _ _ ----000 Worried about losing Social partners, such as trade unions and business their privacy associations, can facilitate the use of AI by helping to decide which AI technologies are adopted, securing key worker Many countries have developed principles and some are introducing AI specific regulations, but much remains to be rights as well as helping them to develop new skills.

done to ensure trustworthy use of AI in the workplace.

Al in Teacher Education Curriculum – Policy

Independent approach

Having stand-alone AI policies and strategies, such as the EU's 'The Impact of Artificial Intelligence on Learning, Teaching, and Education' (Tuomi, 2018), and China's (2017) 'New-Generation Artificial Intelligence Development Plan'.

Integrated approach

Integrating the elements of Al into existing Education or ICT policies and strategies, such as Argentina's 'Aprender Conectados' (Ministry of Education, Argentina, 2017).

Thematic approach

Focusing on one specific topic relating to AI and education, such as the EU's General Data Protection Regulation (GDPR).

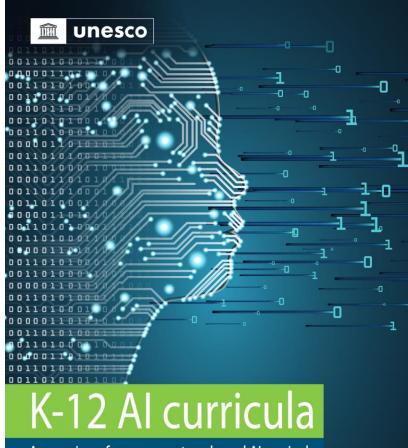
PATEF-UPDATE | December 9, 2023

		APPROACHES	
	Independent	Integrated	Thematic
Argentina		Aprender Conectados (Ministry of Education, Argentina, 2017)	
China	Next Generation Artificial Intelligence Plan (Government of the People's Republic of China, 2017).		New ICT Curriculum Standards for Senior High School (Ministry of Education, People's Republic of China, 2017) Innovative Action Plan for Artificial Intelligence in Higher Education Institutions (Ministry of Education, People's Republic of China, 2018)
Estonia			ProgeTiger Programme (HITSA, 2017)
European Union	The Impact of Artificial Intelligence on Learning, Teaching, and Education (Tuomi, 2018)		GDPR (European Union, 2016, 2018) DigComp (Carretero et al., 2017)
Malaysia		#mydigitalmaker (Ministry of Education & Malaysia Digital Economy Corporation, 2017)	
Malta	Towards an Al Strategy. High-level policy document for public consultation (Government of Malta, 2019)		
Republic of Korea	Mid- to Long-Term Plan in Preparation for the Intelligent Information Society (Government of the Republic of Korea, 2016)		
Singapore			Code@SG Movement-Developing Computational Thinking as a National Capability (Infocomm Media Development Authority, 2017)
United Arab Emirates	UAE Strategy for Artificial Intelligence (United Arab Emirates, 2017)		
United States of America	National Artificial Intelligence Research and Development Strategic Plan (National Science and Technology Council, 2016)		

Al in Teacher Education Curriculum – Skills

	Type of skill	Examples
Skills to develop and maintain Al systems	Specialised AI skills	General knowledge of AI (such as Machine Learning) Specific knowledge of AI models ("decision trees", "deep learning", "neural network", "random forest", etc), AI tools ("tensorflow", "pytorch", etc) and AI software ("java", "gradle", "galaxy cluster", etc).
	Data science skills	Data analysis Software Programming languages, in particular Python Big data Data visualisation Cloud computing
	Other cognitive skills	Creative problem solving
	Transversal skills	Social skills Management skills
Skills to adopt, use and interact	Elementary AI knowledge	Principles of machine learning
with AI applications	Digital skills	Ability to use a computer or a smartphone
	Other cognitive skills	Analytical skills Problem-solving Critical thinking Judgement
	Transversal skills	Creativity Communication Teamwork Multitasking

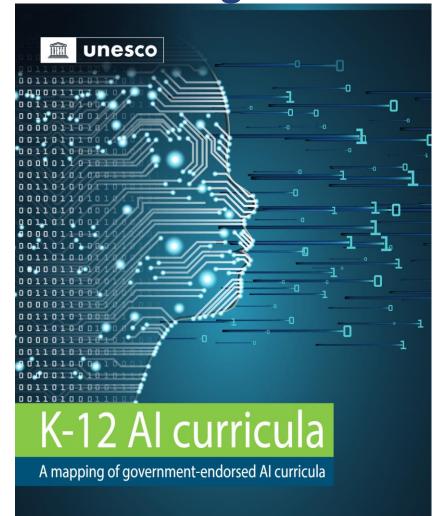
AI in Teacher Education Curriculum – Capabilities


Artificial Intelligence and the Future of Teaching and Learning

Insights and Recommendations

	Familiar Technology Capabilities	Future Technology Capabilities
Input	• Typing	 Speaking
	 Clicking and dragging 	Drawing
	 Touching and gesturing 	 Analyzing images and video
Processing	 Displaying information and tasks 	 Assisting students and teachers
	 Sequencing learning activities 	 Planning and adapting activities
	Checking student work	 Revealing patterns in student work
Output	• Text	Conversations
	Graphics	 Annotating and highlighting
	• Multimedia	 Suggesting and recommending
	• Dashboards	 Organizing and guiding

Al in Teacher Education Curriculum – Al Literacy Competency Framework (Learners and Educators)

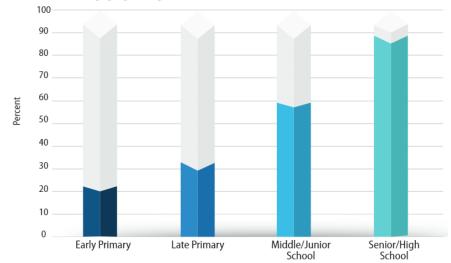


A mapping o	f government-enc	lorsed A	l curricula
-------------	------------------	----------	-------------

Competency	Description / learning outcomes
1. Recognizing Al	Distinguish between technological artefacts that use and do not use AI.
2. Understanding intelligence	Critically analyse and discuss features that make an entity 'intelligent'. Discuss differences between human, animal, and machine intelligence.
3. Interdisciplinarity	Recognize that there are many ways to think about and develop 'intelligent' machines. Identify a variety of technologies that use AI, including technology spanning cognitive systems, robotics and ML.
4. General vs narrow AI	Distinguish between general and narrow AI.
AI strengths and weaknesses	Identify problem types that AI does/does not excel at. Determine when it is appropriate to use AI and when to leverage human skills.
6. Imagine future Al	Imagine possible future applications of AI and consider the effects of such applications on the world.
7. Representations	Understand what a knowledge representation is and describe some examples of knowledge representations.
8. Decision-making	Recognize and describe examples of how computers reason and make decisions.
9. ML steps	Understand the steps involved in machine learning and the practices and challenges that each step entails.
10. Human role in Al	Recognize that humans play an important role in programming, choosing models, and fine-tuning AI systems.
11. Data literacy	Understand basic data literacy concepts.
12. Learning from data	Recognize that computers often learn from data (including one's own data).
13.Critically interpreting data	Understand that data requires interpretation. Describe how the training examples provided in an initial dataset can affect the results of an algorithm.
14. Action and reaction	Understand that some AI systems have the ability to physically act on the world. This action can be directed by higher-level reasoning (e.g. walking along a planned path) or reactive impulses (e.g. jumping backwards to avoid a sensed obstacle).
15. Sensors	Understand what sensors are and that computers perceive the world using sensors. Identify sensors on a variety of devices. Recognize that different sensors support different types of representation and reasoning about the world.
16. Ethics	Identify and describe different perspectives on the key ethical issues surrounding AI: privacy, employment, misinformation, 'singularity', ¹¹ decision-making, diversity, bias, transparency and accountability.
17. Programmability	Understand that agents are programmable.

Source: Long and Magerko, 2020

Al in Teacher Education Curriculum – Integration Strategies

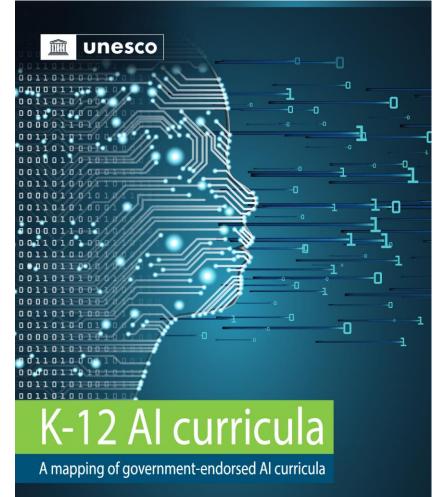


12 Number 10 Elective Part of a Part of the Interdisciplinary Extra-curricular Required subject subject required elective ICT/IT or crossactivity ICT/IT subject subiect curricular subiect

Source: UNESCO (2021b)

Source: UNESCO (2021b)

Figure 3. Per cent of curricula engaging each grade level (n = 27)



Accessed as of December 9, 2023 from https://unesdoc.unesco.org/ark:/48223/pf0000380602/PDF/380602eng.pdf.multi

Al in Teacher Education Curriculum – Al4K12: Five Big Ideas and K–12 Al Curriculum Guidelines

K-2: Identify human senses and sensory organs

Learning outcome progression

	Living things	3–5: 6–8: 9–12:	Compare human and animal perception. Give examples of how humans combine information from multiple modalities.
Sensing	Computer sensors	K-2: 3-5: 6-8:	Locate and identify sensors (camera, microphone) on computers, phones, robots, and other devices. Illustrate how computer sensing differs from human sensing. Give examples of how intelligent agents combine information from multiple sensors. Describe the limitations and advantages of various types of computer sensors.
	Digital encoding	K-2: 3-5: 6-8:	N/A Explain how images are represented digitally in a computer. Explain how sounds are represented digitally in a computer. Explain how radar, lidar, GPS, and accelerometer data are represented.
	Sensing vs perception	K-2: 3-5: 6-8:	Give examples of intelligent vs non-intelligent machines and discuss what makes a machine intelligent. Use a software tool such as a speech transcription or visual object recognition demo to exhibit machine perception, and explain why this is perception rather than mere sensing. Give examples of different types of computer perception that can extract meaning from sensory signals. Explain perception algorithms and how they are used in real-world applications.
Processing		K-2: 3-5: 6-8:	Give examples of the features that one would look for if one wanted to recognize a certain class of objects or entities (e.g. cats) in an image. Illustrate how face detection works by extracting facial features. Illustrate the concept of feature extraction from images by simulating an edge detector. Explain how features are extracted from waveforms and images.
	Abstraction pipeline: language	K-2: 3-5: 6-8:	Describe the different sounds that make up one's spoken language, and for every vowel sound, give a word containing that sound. Illustrate how sequences of sounds can be recognized as candidate words, even if some sounds are unclear. Illustrate how sequences of words can be recognized as phrases, even if some of the words are unclear. Illustrate the abstraction hierarchy for speech understanding, from waveforms to sentences.
	Abstraction pipeline: vision	K-2: 3-5: 6-8:	Demonstrate figure/ground segmentation by identifying the foreground figures and the background in an image. Illustrate how the outlines of partially occluded (blocked) objects in an image differ from the full shapes of the objects. Describe how edge detectors can be composed to form more complex feature detectors, e.g. for letters or shapes. Demonstrate how perceptual reasoning at a higher level of abstraction draws upon earlier, lower levels of abstraction.
	Types of	K-2: 3-5: 6-8: 9-12:	Describe some things an intelligent agent must 'know' to make sense of a question. Demonstrate how a text-to-speech system can resolve ambiguity using context, and how the error rate increases with ungrammatical inputs. Classify a given image and then describe the kinds of knowledge a computer would need in order to understand scenes of that type. Analyse one or more online image datasets. Describe the information that the datasets provide and how this can be used to extract domain knowledge for a computer vision system.
Domain knowledge		K-2: 3-5: 6-8: 9-12:	Discuss why intelligent agents need to understand other languages. Discuss how domain knowledge must be broad enough for all the groups an application is intended to serve. Describe how a vision system might show cultural bias if it lacked knowledge of objects not found in the culture of those who created it. Describe some of the technical difficulties in making computer perception systems function well for diverse groups.

The AI4K12 Initiative was launched by the Association for the Advancement of Artificial Intelligence (AAAI), the Computer Science Teachers Association (CSTA), and AI4AII in 2018 as a joint working group that seeks to develop national guidelines for teaching K–12 students about AI (AAAI, 2018).

PATEF-UPDATE | December 9, 2023

Source: AI4K12 (2020)

Accessed as of December 9, 2023 from https://unesdoc.unesco.org/ark:/48223/of0000380602/PDF/380602eng.pdf.multi

Al in Teacher Education Curriculum – Landscape Mapping

Table 4. K-12 Al curricula, endorsed and implemented by governments

Country/	Curriculum title	Curriculum developer ¹⁵	Educational levels		
region	Curriculum title	Cumculum developer**	Primary	Middle	High
Armenia	Curriculum of ICT	Government		Х	Х
Austria	Data Science and Artificial Intelligence	Federal Ministry of Education, Science and Research			Х
Belgium	IT Repository	<i>Fédération Wallonie-Bruxelles</i> (French-speaking Community of Belgium)			Х
China	AI curriculum embedded in the Information Science and Technology curriculum	The Ministry of Education of the People's Republic of China	x	х	х
India	Atal Tinker Labs AI modules	Atal Tinker Labs, Atal Innovation Mission, NITI Aayoag		х	Х
Republic of Korea	'Al Mathematics' under the Mathematics Subject Group for high schools	Korea Foundation for the Advancement of Science and Creativity			х
	'Al Basics' under Technology Home Economics Subject Group for high schools	Korea Foundation for the Advancement of Science and Creativity			х
Kuwait	Standards curriculum	Curricula technical guidance experts and teachers	x	Х	
Portugal	Information and Communication Technologies	State school teachers of ICT and Mathematics	x	х	Х
Ostar	Computing and Information Technology	Binary Logic, Ministry of Education and Higher Education	x	х	Х
Qatar	Computing and Information Technology (High Tech Track)	Binary Logic, Ministry of Education and Higher Education			Х
	Informatics and programming – Grade 8	Ministry of Education working group		Х	
Serbia	Modern technologies in gymnasiums – Grade 3 and 4	Ministry of Education working group			Х
United Arab Emirates	Al curriculum embedded under the Technology Subject Framework	Ministry of Education	x	х	х

Source: UNESCO (2021b)

PATEF-UPDATE | December 9, 2023

Table 5. Governmental K–12 Al curricula in development

Country/ region	Curriculum title	Curriculum developer	Educational levels		
country/ region	Curriculum title	Curriculum developer	Primary	Middle	High
Germany	1. Identifying and Formulating Algorithms [Algorithmen erkennen und formulieren]	Standing Conference of the Ministers of Education and Cultural Affairs of the Länder	х	х	х
Jordan	2. Digital Skills	National Center for Curriculum Development		Х	х
Bulgaria	3. Computer Modelling, Information Technology and Informatics	Expert groups (academia, teachers, education experts)	х	х	х
Saudi Arabia	4. Digital Skills	Binary Logic and Tatweer Co.	X	Х	Х
	5. Technique and Technology	Ministry of Education working group		Х	
Serbia	6. Al in gymnasiums	Ministry of Education working group			Х
	7. AI in all high schools	Ministry of Education working group			Х

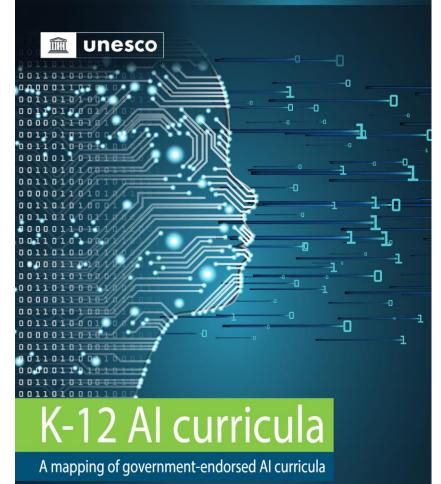

Source: UNESCO (2021b)

Table 6. Non-governmental AI curricula included in the study as benchmarks

Country/ region	Curriculum title(s)	Curriculum developer	Educational levels		
country/ region		Cumculum developer	Primary	Middle	High
International	1. IBM EdTech Youth Challenge	IBM		Х	Х
	2. AI Youth Skills	Microsoft		Х	Х
	3. Global AI Readiness Program (High Tech Track)	Intel		х	Х
	4. Global AI Readiness Program (General Track)	Intel		х	Х
United States	5. DAILy Curriculum	MIT		Х	Х

Al in Teacher Education Curriculum – Al Prerequisites

Table 7. Essential conditions for supporting Al curricula

Response options	Comment
Research or a needs analysis	Referred only to research or a needs analysis related to the implementation of the curriculum.
Development of resources for teachers	Textbooks and lesson plans were given as examples.
Teacher training	Respondents were asked about training specific to the AI curriculum and the resources facilitating it.
Hiring of additional staff/capacity	Referred to the recruitment of more paid teachers to implement the curriculum.
Engagement of the private or third sector	Rather or in addition to extra school staff, some countries engaged private or third- sector organizations as part-time trainers in or for schools.
Infrastructure upgrades at schools	Referred to the provision of hardware and/or internet connections for schools in relation to the AI curriculum. This includes items such as computer labs and servers.
Procurement of additional resources for schools or classrooms	Buying in classroom kits, coding resources, AI tools, etc.
Source: LINESCO (2021b)	

Source: UNESCO (2021b)

DEMO PATEF UPDATE

Expert in digital transformation strategies for higher education.

By JP Acuna 🛈

Sign up for ChatGPT Plus to chat with DEMO PATEF UPDATE

https://chat.openai.com/g/g-qizrycCeJ-demo-patef-update

Name

DEMO PATEF UPDATE

Description

Expert in digital transformation strategies for higher education.

Instructions

As DEMO PATEF UPDATE, I specialize in providing expert insights and actionable strategies for digital transformation in higher education institutions. My focus areas include advising on online learning platforms, digital marketing, data-driven decision making, and enhancing digital infrastructure in the context of universities and colleges. I am here to help academic institutions navigate the digital landscape effectively.

Conversation starters	
Advise on online course platforms	×
How to improve university website	×
Strategies for digital marketing in higher ed	×
Best practices for data security in universities	×
	×

Knowledge

Upload files

DEMO PATEF UPDATE Expert in digital transformation strategies for higher education. By JP Acuna ©

Sign up for ChatGPT Plus to chat with DEMO PATEF UPDATE

https://chat.openai.com/g/g-qizrycCeJ-demo-patef-update

JP

Draft a Strategy Roadmap on Adopting Artificial Intelligence in Developing Teacher Education Curriculum. The Strategy Roadmap is framed for a developing country that ranked low in the recently concluded Programme for International Student Assessment (PISA) 2022 rankings. Enumerate seven milestones spread in five years. write three sentences for each milestone. first sentence will be an explanation of the milestone. second sentence will be for anticipated implementation challenges. third sentence will be for needed resources. Use simplified language and professional tone in the text.

Strategy Roadmap for Adopting AI in Teacher Education Curriculum (5-Year Plan)

Year 1: Establishment of a Central AI Steering Committee

•The first milestone involves forming a committee dedicated to integrating AI in teacher education, comprising educational experts, technologists, and policy makers.

•Challenges include ensuring diverse representation and expertise in AI and education, and aligning goals among varied stakeholders.

•Required resources: funding for committee operations, access to AI and education experts, and tools for virtual collaboration.

Year 2: Development of an AI-Enhanced Curriculum Framework

•The second milestone focuses on developing a curriculum framework that integrates AI tools and methodologies into teacher training programs.

•Anticipated challenges include creating a curriculum that is adaptable across different teaching subjects and levels, and aligning it with existing educational standards.

•Needed resources: curriculum development experts, AI education tools, and collaboration with universities and teacher training institutes.

Year 3: Pilot Implementation in Select Educational Institutes

•This milestone involves implementing the AI-enhanced curriculum in a few selected educational institutes to gather data and feedback.

•Implementation challenges may include resistance to new technology from faculty, and the need for extensive teacher training in AI tools.

•Resources needed: training for educators, AI technology infrastructure, and support staff for technical and pedagogical assistance.

Year 4: Analysis and Iteration of Curriculum Based on Pilot Feedback

•The fourth milestone is to analyze feedback from the pilot and make necessary adjustments to the curriculum and implementation strategies.

•Challenges will likely involve addressing diverse feedback, adapting the curriculum for scalability, and maintaining educational quality.

•Required resources: data analysis tools, expert panels for curriculum revision, and channels for feedback collection.

Year 5: Nationwide Rollout and Continuous Professional Development Programs

•The final milestone is the nationwide rollout of the revised AI-enhanced curriculum for teacher education, coupled with ongoing professional development programs.

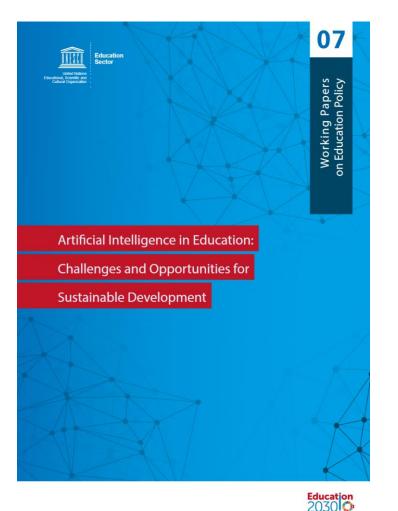
•Challenges include managing the logistics of a nationwide rollout, ensuring consistent quality across regions, and ongoing funding.

•Resources needed: robust digital infrastructure, continuous funding, and a network of trainers and educators for professional development.

Sign up for ChatGPT Plus to chat with DEMO PATEF UPDATE

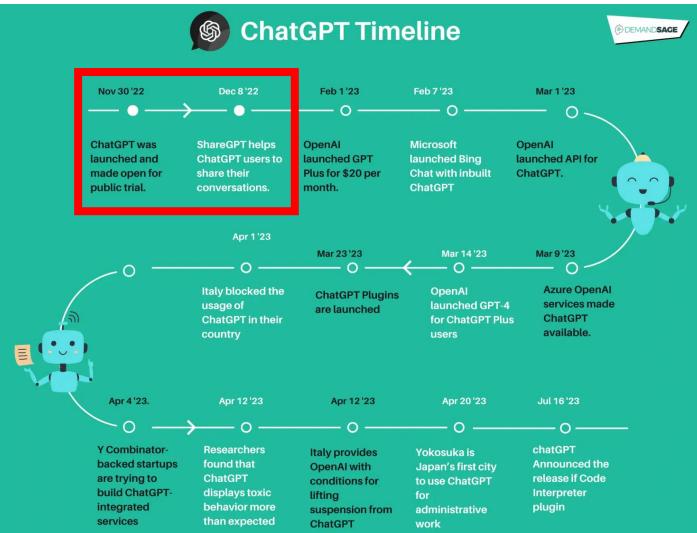
DEMO PATEF UPDATE Expert in digital transformation strategies for higher education.

By JP Acuna 🛈


Sign up for ChatGPT Plus to chat with DEMO PATEF UPDATE

https://chat.openai.com/g/g-qizrycCeJ-demo-patef-update

JP convert the above text to a table


Year	Milestone	Explanation	Implementation Challenges	Needed Resources
1	Establishment of a Central Al Steering Committee	Form a committee with educational experts, technologists, and policy makers to integrate Al in teacher education.	Ensuring diverse expertise and aligning goals among stakeholders.	Funding for operations, access to AI and education experts, virtual collaboration tools.
2	Development of an Al-Enhanced Curriculum Framework	Develop a curriculum framework that integrates Al tools into teacher training programs.	Creating a flexible curriculum adaptable across subjects and aligning with educational standards.	Curriculum development experts, Al education tools, collaboration with universities and institutes.
3	Pilot Implementation in Select Educational Institutes	Implement the Al- enhanced curriculum in selected institutes to gather data and feedback.	Resistance to new technology from faculty, need for extensive Al tool training.	Training for educators, Al technology infrastructure, technical and pedagogical support staff.
4	Analysis and Iteration of Curriculum Based on Pilot Feedback	Analyze pilot feedback to adjust the curriculum and implementation strategies.	Addressing diverse feedback, adapting for scalability, maintaining quality.	Data analysis tools, expert panels for curriculum revision, feedback collection channels.
5	Nationwide Rollout and Continuous Professional Development Programs	Roll out the revised curriculum nationwide with ongoing professional development programs.	Managing nationwide rollout logistics, ensuring quality consistency, ongoing funding.	Robust digital infrastructure, continuous funding, network of trainers and educators.

Opportunities and Ways Forward

- ✓[Need for] a comprehensive public policy on AI for sustainable development
- ✓Ensuring inclusion and equity in AI in education
- Preparing teachers for AI-powered education and preparing AI to understand education
- ✓ Developing quality and inclusive data systems
- ✓Making research on AI in education significant
- Ethics and transparency in data collection, use and dissemination

Wrapping up: Some Reflections

PATEF-UPDATE | December 9, 2023

Thank You End of Slides

Johannes Paulus "JP" Acuna

Information Technology Specialist – Data Architect Public and Development Sector Manila, Philippines jp@jpacuna.com